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LARGE-SCALE LINEAR PROGRAMMING

by George B. Dantzig*

Large—-Scale Systems and the Computer Revolution:

From its very inception, it was envisioned that linear
programming would be applied to very large, detailed models of economic
and military systems. Kantorovitch's 1939 proposals, which were before
the advent of the electronic computer, mentioned such possibilities, [78].
Linear programming evolved out of the U.S. Air Force interest in 1947 in
finding optimal time-staged deployment plans in case of war, [126]; a
probiem whose mathematical structure is similar to that of finding an
optimal growth pattern of a developing economy and similar to other
control probiems, [41], (58], [123]. Structurally the dynamic problems
are characterized in discrete form by staircase matrices representing
the inputs and outputs from one time period to the next. Treated as an
ordinary linear program, the number of rows and columns grows in proportion
to the number of time periods T and the computational effort grows by
T3 and possibly higher. This fact has limited the use of linear

programming as a tool for planning over many time periods.
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At the present 1967 stage of the computer revolution,
there is growing interest on the part of practical users of linear
programming models to solve larger and larger systems [40]. Such
applications imply that eventually automated systems will obtain
information from counters and sensing devices, process data into
the proper form for optimization and finally implement the results by
control devices. There has been steady progress in this mechanization
of flow to and from the computer. Hitherto, this has been one of the
obstacles encountered in setting-up and solving large-scale systems,
[113]. The second obstacle has been the cost and the time required to

successfully solve large problems, [74].

It is difficult to measure the potential of large-scale
planning. Certain developing countries appear, according to optimal
calculations on simplified models to be able to grow at the rate of
15% per year implying a doubling of their industrial base in 5 years.

But administrators apparently ignore plans and make decisions based on

political expediency which restrict growth to 2 or 3% and sometimes -22.

It is the belief of the author that the mechanization of data flow (at
least in advanced countries) in the next decade will provide pathways
for constructing large models and the effective implementation of the
results of optimization. This application of mathematics to decision
processes will eventually become as important as the classical

applications to physics and will, in time, change the emphasis in pure

mathematics.



Three Approaches to Solving Large-Scale Systems:

There have been a great number of papers on this subject as evidenced
from the list of references attached. I have broadly classified them

into:

I Decomposition Principle

(Sub-optimization using interior path)
II Compact Inverse

(Using a simplex variant)
III Parametric Variation

(Sub-optimization using simplex variant)

The aim is to say a little about each, citing some references and some

structures to which they are applicable. We shall begin with

I: The Decomposition Principle, [47]:

Consider the non-linear programming problem: Find

X = (xl,...,xn) such that

(1) g(x) = Min
fl(x) < 0 Ay
fz(x) < 0 A,

£ <70

We assume g(x) and fi(x) are convex functions of x . Assigning

Lagrange Multipliers A, to a subset of the constraints, say the first

i
two, we obtain the SUBPROBLEM: Find x and Min @(x) satisfying

(2) @(x) = g(x) + lel(x) + Azfz(x)

f3(x) < 0,...,fm(x) <0
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Theorem: If for given A; » x =12 solves the subproblem (2)_and if
fi(ﬁ)_i 0 for all i and Aifi(ﬁ) =0 for i= (1,2) then x = &

solves (1).

We shall discuss a method where we assign values to Ai

and if the resulting x = & does not satisfy the conditions in the theorem,
this fact can be used to improve the values of Ai .
(Ia) Example:

FIND x>0, Min fo(x):

(3) c; ¥ + c, %, + Cy Xq + c, X, + cg X5 = fo(x)
allx1 + alzx2 + al3x3 + a14x4 + ale5 = bl t A= Al IGUESSl
\
a21xl + a,,%, < b2
a31%) + a3y%, = by
3,3%3 t 34,%, =Ne
. b > SUBPROBLEM
859%3 T 8g5.%, =P
5% IS 0p
Gl(xl,xz) + ¢2(x3,x4) + ¢3(x5) = @(x) Min/

where 01 = (c1 + Xan)x1 + (c2 + Aalz)xz; ¢2 = (c3 + Aa13)x3 + (ca + Aala)x4;

03 = (cg + 2ajodx,

Note that the subproblem decomposes into three separate problems; hence

the term: '"Decomposition Principle”.

(Ib) Equivalent Generalized Linear Program:

Returning to problem (1) we now restate it in the form of

el s
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Wolfe's Generalized Linear Program, [38, Chapter 22]. This differs from

an ordinary linear program in that the coefficients in each column P

3

. It can
3 ,

be shown that the following problem is equivalent to (1). \

instead of being fixed are freely drawn from a convex set C

FIND Min 2z , w2 0 such that

o] Fr] [ech 2 (x") g® | : 1
0 0 fl(xl) fl(xt) £,(%) 0y
(4) > z+ 1 wl+...+ 3 wt+ _ v
0 0 f2(x ) fz(x ) fz(x) : AZ
\_1- 01 L1 - 1 4 ) IS M
RESTRICTEY MASTER

where x' and X satisfy f3(x)'§ 0,000,f (x) <0 and the solution

to (1) is

o i - .
(5) g =) wix© WX,

SIcz Iterative Process:

At the start of iteration ¢t , xl,...,xt are known. An

improved guess of (Al . AZ) and a new x = xt+1 is obtained by solving

the "restricted master" linear programming indicated in (4). Let the

t t t

optimal dual variables be (1, Al’ AZ’ ut) and let wy =Wy be the
optimal primal variables. Then |
t
(6) &= z w; xi

i=1

is an optimal solution to (1) if

L - x

t t
1 2

£, <0, £,(x) <03

(7) Min [g(x) + A £,(0) + A, £,(x) +u] 20,



i.e. if the last column "prices out" non-negative for all admissable x .
But (7) is the same as solving the subproblem (2) using (Al, Az) - (Ai, Az) .
If in (7), x = xt+1 yields a Min < 0 , this x 1s used to generate a

new column of (4).

The successive &= satisfy f ,(x) <0 for all i and
g(ﬁt) + Min g(x) . The iterative process is finite when applied to a

linear program like the preceeding example (3).

This completes our discussion of the decomposition approach.

To be useful, the generated subproblems must be gagy to solve, [33,Chapter 24].

QIQ Compact Inverse:

The second approach accepts the standard simplex or any of the
numerous variantg and tries to arrange the arithmetic to take advantage
of structure. It is clear that if the number of iterations is fixed, the
only savings can come from doing each iteration efficiently: i.e. doing
the pricing and those operations involving the inverse of the basis

efficiently.

QIa! Sgarse Matrices:

The larger problems become the lower, in practice, become the
density of non-zero coefficients. For problems of 200 equations a density
of 5% is typical; for larger problems the density drops to .5% or less.

It is possible,however, that the inverses of bases drawn from such

matrices to be 100% dense, for example:

!
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However, if the inverse is expressed as products of elementary matrices of
either the row or column type or both in any order, the number of off-

diagonal non-zeros in this representation can often be quite low.

lnsolved problem: Given a basis express the inverse as the product of
elementary matrices such that the count of off-diagonal non-zero elements

is minimal.

Markowitz [90] proposed that the elementary matrices
correspond to upper and lower diagonalization operations using as pivot
element the one that locally creates as few additional non-zeros as
possible. Variations of this idea have been incorporated in commercial
codes in the early 1960's, see [43]. The inverse of a 5% dense basis
often running not more than 7% dense and the running time often is cut
by a factor of 5. In example (8), the inverse in product form has the

same number of non-zeros as the originating basis.
IIb) Dynamic Structures:

As noted earlier these have important applications [95].
One such is to linear control processes, see [114], [128]. As early as
1954, the author published a paper on how to compact the inverse

representation of the basis with a staircase structure, (9); see [32].




Again, in 1963, I discussed another method which also permitted one to

find a compact inverse and efficiently maintain the compactness in moving
from one iteration to the next, [37]. There have been other proposals, all
excellent, that seek to apply the simplex method to the full system by
compacting the inverse. As far as I know, none of these direct proposals

have been realized in computer codes. See [5], [56], [71].

A
9) _
lst period
input
el )
1st period ||2nd period
output input
| =5
2nd period] |3rd period
output input
-A3 A4
3rd period| |4th period
output input
-A4
4th period
output

An important special case is the Dynamic Leontief Economic

Model with Substitution [33]. Another Special Case is a Markov Process

with Alternative Policies [125], [76]. These cases are known to be

mathematically equivalent and to have a remarkably simple solution. A

Leontief System is defined by: (1) a non-negative right hand side,

8
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(2) exactly one positive coefficient in each column, and (3) the
existence of a feasible solution for some positive right hand side.
In the dynamic case, we further assume that the positive coefficient

always appears in the input block along the diagonal.

Theorem: The optimal choice of basic columns associated with the last

period is independent of the choice in prior periods.

This permits the determining of optimal basis and Lagrange multipliers

for the last block of equations. Weighting these equations by their
multipliers, the last period equations are subtracted from the cost
equations to produce a modified-cost equation. Dropping these equatioms,
the optimal choice of columns for the next-to-last period and prices are
next determined using the modified-cost equation; etc. backwards in time
until the first period is reached. When the basic columns of the first
period become known, the value of its basic variables can be calculated,

these in turn can be used to determine those of the second period, etc.

forward in time. [118].

The essential characteristic of the basis in the dynamic
Leontief case and in the Markov Process case is that the blocks of non-
zero coefficients are square and non-singular and the entire basis is
block triangular. Hence only the inverses of blocks along the diagonal
are needed; the rest of the calculations can be done by substitution
below the diagonal. An ideal block-triangular structure! Unfortunately,
the general staircase problem does not have this property. It would be

very worthwhile to see if one can find a meaningful economic extension of
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the Leontief model (like the introduction of activities that generate

capital) that is tractable.

(IIc) Block Angular Systems: These consist of M general linear

equations and L sets of equations which have no variable in common.

The blocks of non-zero coefficients are depicted below.

(10)

Several proposals have been made to compact the inverse, see
particularly Bennett [21]; also [79], [106]. Essentially they all
chose square non-singular submatrices Bi from the basis along the
block diagonal which are used as block pivots to initiate the
elimination. After the elimination, a square m x m submatrix is

left. Many practical problems satisfy this structure. One important

subclass are the multi-commodity network problems, [54], [77],

sometimes referred to as the traffic assignment problem [24]:

(11) Find x >0, Min z :

1jk

X <e (i,j,k) = 1,...,n.
E 1jk — 13

10
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(p,k) = 1,...,n
g § é C1ik *1gk = 2
In another type of application involving the allocation of many orders
to several plants, the diagonal blocks consist of one equation each.
Such a system is referred to as a generalized upper-bound structure,
[46]. In one application L = 4000 and M = 20 . An important
property of such systems is that when L 1is large relative to M most
(in fact L-M or more) of the diagonal equations have exactly one
basic variable among the set of its variables. The fact that most
basic variables are at their upper-bound value can be used to advantage.
The first code along these lines was developed by M. Kasatkin and
J. Bigelow for a problem of Crown Zellerbach paper corporation.
Running time on an example was about 1/10 the time thac was required

by a general purpose code. See also [65].

IId) Bordered Angular Systems: This consists of blocks along the
diagonal of non-zero coefficients and a border of non-zeros along the

top and left.

(12)

by » —

This structure is sufficiently generai yet specialized to usefully cover

11
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a majority of current applications except the staircase type.
Generalization (of the procedures just discussed) have been made by
heesterman, [72). Ritter [99) has generalized Rosen's parametric

scheme, [103].

III. P etri iation:

The third and last approach depends on the system being
weakly linked i.e. on the existence of a few rows and columns which,
if removed, makes the solution of the remaining system trivial. For
example, a network-flow problem with an extra budget constraint. By
assigning a Lagrange Multiplier to the latter, the constraint could
be removed and the objective equation modified by adding to it the
multiple of the removed constraint. The resulting pure network could
then be easily solved. If the solution does rot satisfy the
constraint and complementary slackness conditions, then the Lagrange

Multiplier is varied until it does. This is also the idea behind the

decomposition principle but the proposed methods of variation (such as

those below) are more direct:

Rosen: '"Partition Programming" [103], Ritter [99].
Kron: "Diakoptics" [83].

Balas: ‘"Infeasibility Pricing" [10].

Beale: 'Pseudo Basic Variables" [17].

Abadie & Williams: [3].

Gass: "Dualplex Method" [59].

|
|

gIIIag Dualplex Method:

As representative of the parametric approaches I have selected
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Gass' "Dualplex Method" which is related to Rosen's "Partition

Programming" in dual form. It is clear if we had a transposed block-

angular structure

Ey
(13) E,
D =b
Eq
Pivoting allowed here Not here
X>0 Y>0

that pivoting in the right hand interconnecting part would destroy the

angular structure but pivoting anywhere in El’ EZ’ E3 would not.

We ;ssume that for a given Y = Y° > 0 (variables associated with D )
a feasible solution X = Xo.: 0 exists and is optimal. Let the system
be reduced to optimal canonical form restricting pivots to only columns

of Ei -

(14) IXg + AX, + DY = b

X, +dYy = z -2 (Max)

where XB are basic variables and XN,Y non-basic. Holding XN =0

for the moment, we solve the subproblem

(15) DY <b, Y>0, Max dY.

13



The dual of this subproblem is
(16) m>d, N>0, Min Ib.

Since BT is presumed to consist of few rows and many columns, it is

1

suitable for solution by the standard simplex method. Let li=N" be

an optimal solution and Y = Yl 2 0 be optimal to its dual. Denote
by Di the i-th row of D and by 15 the j-th column of A . Let
the basic xB be partitioned into XI = 0 and xII > 0 according as

components x, = 0 or X, > 0 where x +D,Y =b, ; Let the

i i i
non-basic XN be partitioned into xIII and xIV according as
§, =c, -TA, >0 or <0.
3 J J -
Srrg/> 0 Sijy= 0
= = = '
XI 0 xII >0 xIII 0 xIv 0 Y' >0
1 ) ) .g
e Pivot 5
arn | __.___ e e = - Jr------‘ ..... -
.1 L]
e A D
L] -1 L[]
. i = z-zo(Hax)

The block pivot:
The next step is to find the block pivot of highest rank that

switches the role of as many basic and nonbasic variables in XI and

XIII as possible. Since both sets are at zero value this does not

effect the current feasible solution. If there is a choice of block

pivot its columns are selected from those with highest 6, values.

b
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After the pivot the new dual subproblem is solved using as starting
basis, the one corresponding to the final basis of the previous
subproblem. Y' > 0 1is still a feasible price vector of the dual

subproblem but NI' no longer satisfies it. However,

Theorem (Gass):

If after the block pivot those components Hs of I

corresponding to 61 > 0 are replaced by the value -6i » the new

n constitutes an infeasible basic solution to the new subproblem;

Y' > 0 remains as a feasible vector of dual simplex multipliers.

Because of infeasibility, the new subproblem can be improved
(using the dual simplex method). This is repeated iteratively until all
Gj <0 or z -+ + ., Associated with each iteration is a basic feasible

to the full problem so that usual proof of a finite-number-of-iterations

applies.

The parametric methods should be regardéd as important

variants of the standard simplex process.

Concluding Remarks:

This completes the survey of the three types of approaches
to sclving large-scale systems: Decomposition, Compact Inverse, and
Parametric Variation, and of the type of matrix structures that each
are best suited. Little has been said about how different proposals

compare on test problems. At present, there does not appear to be a

15



practical way to do this. The program of instructions for the computer
are often an order of magnitude more complex than a good commercial
linear program system and the latter can cost two to five hundred

thousand doliars to develop. The author feels that better computer

languages have to be developed to facilitate the experimental coding

and comparision of large-scale system proposals, [74].
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